
Pagination.cfc Documentation

Pagination.cfc open source project
Nathan Strutz
http://www.dopefly.com/

Index

1. What is Pagination?
2. Why Use Pagination.cfc?
3. How to Use Pagination.cfc
4. Pagination.cfc Property Reference
5. Pagination.cfc Styling Reference
6. Extending Pagination.cfc

1. What Is Pagination?

Pagination is the practice of splitting your data into multiple pages and allowing navigation
both to, and between those pages. It is sometimes called NextN Navigation.

Example 1, you may have 300 products to display on a page. Displaying them all would be
unreasonable, however, displaying 10 or 20 at a time makes sense. This is where you would
bring in pagination.

Example 2, you may be creating a mail application. Pagination could be easily used in 2
places here. First, to limit the number of message subjects displayed on the message list
page. Second, to handle next / previous controls when viewing an individual message.

2. Why use Pagination.cfc?

Years ago, when creating my first pagination routine, I was surprised at how many lines of
code it took, even for an instance specific, non-customizable, single-use solution. I was
making a messaging system and needed to limit the number of records shown, so I created
2 "NextN" navigation systems to handle pagination. Years later, I used my hindsight to spot
the problem: too many lines of code for a non-reusable solution. Something needed to be
done.

Pagination.cfc offers a customizable, reusable pagination solution that won't make you write
too many lines of untested code. Pagination.cfc offers an easy, friendly solution. Open

1

source means higher quality, and Pagination.cfc has undergone unit tests and peer reviews.

3. How to use Pagination.cfc

There are 6 steps to using Pagination.cfc

1. Copy Pagination.cfc into your application
2. Instantiate the Pagination component
3. Give Pagination.cfc the data to be paginated
4. Set your other output preferences
5. Output the generated HTML from Pagination.cfc
6. Use the calculated properties in Patination.cfc in other places

1. Copy Pagination.cfc into your application

I suggest putting it where your other components (CFCs) live, more appropriately, in a
utilities package. If your components don't have a home, or if you don't use any, you can
put them in a /components/ folder off of your application root. It really doesn't matter,
though.

2. Instantiate the Pagination component

Much like you would do with any other component. I prefer using the createObject function.

<cfset pagination = createObject("component", "components.Pagination").init()
/>

3. Give Pagination.cfc the data to be paginated

Pagination.cfc can paginate queries, arrays or structures. In this way, nothing stops you
from paginating over structs of arrays or arrays of structs, etc.

<cfset pagination.setQueryToPaginate(myQuery) />
or
<cfset pagination.setArrayToPaginate(myArray) />

This is an important step! Without it, Pagination.cfc will throw an error when you ask it to
render the output HTML.

4. Set your other output preferences

It is recommended that you set the BaseLink property (the link to the current data view),
especially if it could change, such as from a create/update/delete command on the data that
then returns to the view with a different URI. This should be the URI without the pagination
link. Pagination.cfc will discover the base link for itself if one is not provided.

<cfset pagination.setBaseLink("/app/photolist.cfm?year=2007") />

2

Another important property you may want to tweak is the ItemsPerPage property. A single
message view will only want 1 item per page, while for a large list, you may want 100. The
default value is 10.

<cfset pagination.setItemsPerPage(25) />

Another important property is UrlPageIndicator, which tells Pagination.cfc what URL variable
to use for managing the paging index. The default value is "pagenumber" and you can
change it.

<cfset pagination.setUrlPageIndicator("page") />

The final important property for this abbreviated list is ShowNumericLinks. This boolean
property turns on and off the display of numbered pages. When ShowNumericLinks is false,
which is the default, the rendered HTML will output previous and next controls but no
numbers. When it is set to true, the numbering is displayed. The numbers that are
displayed depends on the other options, such as the
NumericDistanceFromCurrentPageVisible and NumericEndBufferCount properties.

<cfset pagination.setShowNumericLinks(true) />

Please see the reference in the next section of this document for a list of all the properties
you can use to customize and tweak the pagination display.

5. Output the generated HTML from Pagination.cfc.

#pagination.getRenderedHTML()#

Pagination.cfc caches the rendered output, so subsequent calls will cause no performance
decrease. The cache is reset if you change a property such as the number of items per
page.

6. Use the calculated properties in Patination.cfc in other places

Pagination.cfc will calculate some fields you may need such as TotalNumberOfPages,
CurrentPage, StartRow and EndRow. These are discussed in more detail in the reference
section at the end of this document.

<cfoutput query="myQuery" startrow="#pagination.getStartRow()#"
maxrows="#pagination.getMaxRows()#">

The final block of code, using the above options, will look like this.

<cfset pagination = createObject("component", "components.Pagination").init()
/>
<cfset pagination.setQueryToPaginate(myQuery) />
<cfset pagination.setBaseLink("/app/photolist.cfm?year=2007") />
<cfset pagination.setItemsPerPage(25) />
<cfset pagination.setUrlPageIndicator("page") />
<cfset pagination.setShowNumericLinks(true) />

3

#pagination.getRenderedHTML()#
<cfoutput query="myQuery" startrow="#pagination.getStartRow()#"
maxrows="#pagination.getMaxRows()#">

#id# - #name#
</cfoutput>
#pagination.getRenderedHTML()#

4. Pagination.cfc Property Reference

All of these properties are retrievable by use of getter methods. Almost all of them are
transmutable (you can change them) via setter methods. As shown in the previous
examples, you will call getProperty() and setProperty(Value) where Property is one of the
below listed properties and Value is a valid type value for the given property.

Some types have aliases, which are sometimes friendlier alternatives to the given name. For
example, you can set the ItemsPerPage value, but within a cfquery tag, it makes more
sense to call it MaxRows (see the example in section 3). You can use these aliases
interchangeably.

The CFC itself documents these properties with hints, but you can use this list as an offline
reference.

Essential Properties
QueryToPaginate (query, alias:Query)
The query object to paginate. QueryToPaginate, ArrayToPaginate or StructToPaginate are
the only required fields; one of these must be set.

ArrayToPaginate (array, alias:Array)
An array object to paginate instead of a query. QueryToPaginate, ArrayToPaginate or
StructToPaginate are the only required fields; one of these must be set.

StructToPaginate (struct, alias:Struct)
A struct to paginate over instead of a query or an array. Will create its own ordered key list
if one is not provided (as the 2nd argument). QueryToPaginate, ArrayToPaginate or
StructToPaginate are the only required fields; one of these must be set.

ItemsPerPage (numeric; alias:MaxRows)
Number of items to display per page.

BaseLink (string, default:calculated)
The link to the current page. If one is not given, Pagination.cfc will guess based on the
current URL. This can have bad side-effects if there is more than one URI that accesses the
same data, such as an update or delete command to a list.

UrlPageIndicator (string, default:pagenumber)
The URL variable used to track the current page number.

CompressHTML (boolean, default:false)
Option to remove whitespace from the generated HTML and combine to one line. It is

4

possible, though unlikely, that this can cause formatting issues if you rely on whitespace for
character spacing, etc.

Number Related Properties
ShowNumericLinks (boolean, default:false)
Option to display linked pagination numbers. Without, you will see something like:
< Previous Next >
With this option enabled, you will see something like:
<Previous 1 2 3 Next >

NumericDistanceFromCurrentPageVisible (numeric, default:3)
The count of numeric links to display on either side of the currently selected page. A count
of 1 may display:
1 2 ... 28 29 30 ... 49 50
A count of 4 may display:
1 2 ... 25 26 27 28 29 30 31 32 33 ... 49 50

NumericEndBufferCount (numeric, default:2)
The count of end "buffer" numbers for either side. A count of 1 may display:
1 ... 27 28 29 30 31 ... 50
A count of 5 may display:
1 2 3 4 5 ... 27 28 29 30 31 ... 46 47 48 49 50

ShowMissingNumbersHTML (boolean, default:true)
Option to display HTML between numbers when one or more numbers are skipped. This is
the same as setting the MissingNumbersHTML value to "".

MissingNumbersHTML (string, default:"...")
HTML to place where numbers are skipped. The default value will display:
1 2 3 ... 10
Changing the value to "_{skip a few}" will display:
1 2 3 skip a few 10

BeforeNumericLinksHTML (string)
HTML to place between any Previous link and the numeric links (if numeric links are
enabled).

BeforeNextLinkHTML (string)
HTML to place between numeric links and any Next link

Next/Previous Control Related Properties
ShowPrevNextHTML (boolean, default:true)
Option to display Previous and Next controls. If you turn this off, please turn on
ShowNumericLinks so the numeric navigation is displayed.

PreviousLinkHTML (string, default:"< Previous")
HTML to display for the previous page link. The link to the previous page will automatically
be placed around this HTML. Remember to use HTML entities to escape illegal characters
such as < and >.

NextLinkHTML (string, default:"Next >")

5

HTML to display for the next page link. The link to the next page will automatically be placed
around this HTML. Remember to use HTML entities to escape illegal characters such as <
and >.

ShowPrevNextDisabledHTML (boolean, default:true)
Option to display previous and next links while on the first and last pages, respectively.

PreviousLinkDisabledHTML (string, default:"< Previous")
HTML to display for the previous page link when the link is not active because you are on
the first page. Remember to use HTML entities to escape illegal characters such as < and >.

NextLinkDisabledHTML (string, default:"Next >")
HTML to display for the next page link when the link is not active because you are on the
last page. Remember to use HTML entities to escape illegal characters such as < and >.

ShowFirstLastHTML (boolean, default:false)
Option to display link controls to jump to the first and last pages.

FirstLinkHTML (string, default:"<< First")
HTML to display for the first page link. The link to the first page will automatically be placed
around this HTML. Remember to use HTML entities to escape illegal characters such as <
and >.

LastLinkHTML (string, default:"Last >>")
HTML to display for the last page link. The link to the last page will automatically be placed
around this HTML. Remember to use HTML entities to escape illegal characters such as <
and >.

ShowFirstLastDisabledHTML (boolean, default:false)
Option to display first and last link controls while on the first and last pages, respectively. If
enabled, the FirstLinkDisabledHTML and LastLinkDisabledHTML will be used

FirstLinkDisabledHTML (string, default:"<< First")
HTML to display for the first page link placeholder when the link is not active because you
are on the first page. Remember to use HTML entities to escape illegal characters such as <
and >.

LastLinkDisabledHTML (string, default:"Last >>")
HTML to display for the last page link placeholder when the link is not active because you
are on the last page. Remember to use HTML entities to escape illegal characters such as <
and >.

Calculated Properties
These properties do not have public setters. Do not attempt to set these properties, but
please use them.

TotalNumberOfPages (numeric, default:calculated)
The total number of pages to be paginated over. This is calculated based upon the total
number of items to display and the number of items to display per page.

CurrentPage (numeric, default:calculated)
The page the user is currently viewing. This is taken from the URL page number variable.

6

Please call this instead of #url.pagenumber#, as the URL variable name can be changed.

StartRow (numeric, default:calculated)
The starting row for the current page. Use this in your output loop to set the first row to
display on the page. This should match up with you cfoutput startrow attribute.

EndRow (numeric, default:calculated)
The last row displayed on the current page. This property is for your convenience.

TotalNumberOfItems (numeric, default:calculated)
Number of items in your data that will be paginated over.

FirstPageLink (string)
Link to the first page.

PreviousPageLink (string)
Link to the previous sequential page.

NextPageLink (string)
Link to the next sequential page.

LastPageLink (string)
Link to the last page.

RenderedHTML (string)
The calculated and rendered HTML output. Call for this to retrieve your pagination four
outputting directly into your page.

5. Pagination.cfc Styling Reference

Use stylesheets is the way to make Pagination.cfc's output look the way you want it to. As
such, I have created this quick reference.

Here is an outline of the HTML for CSS reference:

<div class="pagination custom"><!-- can include your own custom class -->
First Page OR Disabled First

page Link
Previous Page OR Disabled

First page Link
<a>1
2
<a>3

Next Page OR Disabled First page
Link

Last Page OR Disabled First page
Link
</div>

7

Now, here is some basic CSS I recommend to get you started styling your pagination
output:

div.pagination a { border:1px solid blue; text-decoration:none; padding:4px; marign:0 4px;
}
div.pagination span { marign:0 4px; }

This will surround linked elements with a nice box and space them out a bit.

Also, please note the numerous styled demo examples included with the download where
you can see both execution and styling examples in action.

6. Extending Pagination.cfc

In order to provide deeper customization to your application, you may want to extend
pagination.cfc. As a large number of ColdFusion developers don't know what this involves, I
will provide an example.

Let's say that you want your pagination to output in this format:

<< < Page 7 of 9 > >>

There are two ways to do it. First, you can write the HTML on your .cfm page like this:

<cfset pagination = createObject("component", "components.Pagination").init()
/>
<cfset pagination.setQueryToPaginate(myQuery) />

<<
<<
Page #pagination.getCurrentPage()# of #pagination.getTotalNumberOfPages()#
<<
<<

This solution is not reusable and not very well separated from the rest of your application. It
adds a lot of messy code to the page. Instead, consider extending Pagination.cfc with a
reusable solution. Here is Pagination_Custom.cfc:

<cfcomponent extends="Pagination">
<cffunction name="renderHTML">

<cfset var renderedOutput="" />
<cfsavecontent variable="renderedOutput">

<cfoutput>
<<
<
Page #getCurrentPage()# of #getTotalNumberOfPages()#
>
>>

8

</cfoutput>
</cfsavecontent>
<cfreturn renderedOutput />

</cffunction>
</cfcomponent>

This new solution overrides the renderHTML() private method in Pagination.cfc. When you
call getRenderedHTML(), it will run this method to render the HTML instead of the default
method. This cleans up the code required on your cfm page as well. The following example
shows how to use this new solution:

<cfset pagination = createObject("component",
"components.Pagination_Custom").init() />
<cfset pagination.setQueryToPaginate(myQuery) />
#pagination.getRenderedHTML()#

9

	Pagination.cfc Documentation
	Index
	1. What Is Pagination?
	2. Why use Pagination.cfc?
	3. How to use Pagination.cfc
	
	
	4. Pagination.cfc Property Reference
	5. Pagination.cfc Styling Reference
	6. Extending Pagination.cfc

